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Abstract
We study superconductor–ferromagnet bi-layers, not only for s-wave, but also
for d-wave superconductors. We observe oscillations of the critical temperature
when varying the thickness of the ferromagnetic layer for both s-wave and
d-wave superconductors. However, for a rotated d-wave order parameter
the critical temperature differs considerably from that for the unrotated case.
In addition we calculate the density of states for different thicknesses of
the ferromagnetic layer; the results reflect the oscillatory behaviour of the
superconducting correlations.

1. Introduction

The interplay of superconductivity and ferromagnetism has been studied for many years [1, 2].
Nowadays the focus is on hybrid-structures of superconductors and various ferromagnetic
materials. For bi-layers consisting of a superconductor and a ferromagnetic metal an oscillation
of the critical temperature has been found, experimentally [3–5] as well as theoretically [6, 7],
when increasing the thickness of the ferromagnetic layer. Similar observations have been
made for superconductor–ferromagnet multi-layers [8, 6]. For two superconductors which
are coupled via a thin layer of ferromagnetic metal an oscillation of the critical current when
varying the layer thickness has also been reported [9, 10]; depending on the layer thickness
such systems can be π-junctions. Recently a layer of a ferromagnetic metal attached to
a bulk superconductor has been considered, resulting in the density of states also showing
oscillations [11–14]. The origin of these effects is a state in the ferromagnetic metal which is
similar to that proposed for a ferromagnetic superconductor by Larkin and Ovchinnikov [2]
and Fulde and Ferrell [1]: in the presence of a spin exchange field the superconducting order
parameter is spatially oscillating. A LOFF-like state can be present in a ferromagnet where
superconducting correlations enter via the proximity effect [7].

Up to now only s-wave superconductors have been studied. In view of possible
applications, it is also important to consider an order parameter with d-wave symmetry, which
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Figure 1. A bi-layer consisting of a superconductor of thickness dS and a ferromagnetic metal
of thickness dF. The interface between both materials (at x = 0) is assumed to be completely
transparent, and the sample is translationally invariant in the y- and z-directions.

presumably is realized in the cuprates; there the crystallographic orientation fixes the direction
of the d-wave lobes. For a related experimental investigation see [15].

In this work we extend the theory to d-wave superconductors, where we have to account
for the anisotropy of the order parameter. This means that in the quasi-classical framework,
which we use, the Usadel equation is no longer applicable, and we have to use the Eilenberger
equation instead. It should be mentioned that the Eilenberger equation is also needed for the
description of s-wave superconductors in the clean limit, which was pointed out for the current
problem in [16].

In the following we study a bi-layer of a superconductor and a ferromagnetic metal as
presented in figure 1. As the structures we are interested in are three-dimensional, our mean
field approach is of sufficient accuracy. We consider the behaviour of the critical temperature
and of the density of states. In particular we compare the results for different order parameter
symmetries, namely of the s-wave and d-wave type. First we briefly introduce the fundamental
quasi-classical equations. Afterwards we present the results, and we finish with a short
conclusion.

2. Method

To study superconductors in the vicinity of boundaries we apply the theory of quasi-classical
Green functions in thermal equilibrium [17, 18]. The Green functions are determined from
the Eilenberger equation[
τ̂3 E + I (r)σ̂3 + i�̂(pF, r) − �̂(r), ĝ(E,pF; r)

]
+ ivF · ∂r ĝ(E,pF; r) = 0 (1)

and must fulfil the normalization condition[
ĝ(E,pF; r)

]2 = 1̂. (2)

Here τ̂i is the direct product of the i th Pauli-matrix in Nambu space and the identity in spin
space; vice versa σ̂i is the direct product of the i th Pauli-matrix in spin space and the identity
in Nambu space. Consequently the Green function, ĝ, has a 4 × 4 matrix structure. For
our purpose it is sufficient to choose the orientation of the internal spin-exchange field of the
ferromagnetic metal in the z-direction, I(r) = I (r)ez , which leads to the term I (r)σ̂3 in the
Eilenberger equation.

The superconducting order parameter, which we assume to be spin-singlet, reads

�̂(pF, r) =
(

0 iσ̂2�(pF, r)

−iσ̂2�
∗(pF, r) 0

)
(3)

with

�(pF, r) = η(pF)�(r). (4)
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The symmetry of the order parameter is determined by the basis function, η(pF):

η(pF) =



1 s-wave (ηs)
(p2

Fx − p2
Fy)/p2

F unrotated d-wave (ηd)

pFx pFy/p2
F 45◦-rotated d-wave (η′

d).
(5)

The order parameter must be determined self-consistently via

�̂(r) = −πVN0T
∑

|En |<Ec

σ̂2

2
Trσ

[
σ̂2

〈
η(p′

F)ĝ(E,pF; r)
〉
pF

]
, (6)

where 〈· · ·〉p′
F

denotes an average over the Fermi surface, which is assumed to be spherical
in the s-wave case and cylindrical in the d-wave case (this is justified for the layered cuprate
superconductors). The cut-off energy is Ec, the attractive interaction is V < 0, and the normal
density of states per spin at the Fermi energy is denoted by N0. Impurity scattering is treated
in the Born approximation which leads to the following self-energy:

�̂(E, r) = −i

2τ

〈
ĝ(E,pF; r)

〉
pF

(7)

with the scattering time τ .
It is important to note that in principle the quasi-classical theory is only valid if all energy

scales are small compared to the Fermi energy, EF; for most superconductors this is the case
as Tc � EF. However, for many ferromagnetic materials the exchange energy is of the
same order of magnitude as EF. Strictly speaking this theory can therefore only be applied
for rather weak ferromagnets. Strong ferromagnets have been treated in some special cases:
superconductors in proximity to half-metals (where only one spin-channel is metallic) [19] or
in contact with strong ferromagnetic insulators [20, 21] have been examined by extensions of
the quasi-classical theory.

3. Results

First we investigate the oscillations of the pairing function in a quite simple system which we
can treat analytically: we consider a ferromagnetic layer of thickness dF attached to a bulk
superconductor (dS → ∞, see figure 1) without disorder; for simplicity we consider the case of
a spherical Fermi surface in both materials, and an identical Fermi velocity, vF. Furthermore,
we assume a completely transparent interface at x = 0, a specular surface at x = dF, and a
spatially constant order parameter in the superconductor, �(pF, r) = �(pF). Then the normal
part of the Green function in the ferromagnetic metal reads

g↑↑/↓↓(E,pF) = 1 − eiϑ↑/↓(E,pF)α(E,pF)β(E,p′
F)

1 + eiϑ↑/↓(E,pF)α(E,pF)β(E,p′
F)

(8)

with

α(E,pF) = E − √
E2 − |�(pF)|2
�∗(pF)

, (9)

β(E,pF) = − E − √
E2 − |�(pF)|2
�(pF)

(10)

and

ϑ↑/↓(E,pF) = 2(E ∓ I )λ(pF)

vF
; (11)
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Figure 2. The density of states at E = 0 is shown as a function of the ferromagnetic layer
thickness with ξF = πvF/I . The s-wave and the unrotated d-wave case are almost identical with
maxima at dF = (1/2 + k)ξF/2, where k is an integer; for a rotated d-wave order parameter the
maxima are shifted to dF = kξF/2. For the plot we added a finite imaginary part to the energy
(E → E + i0.01Tc).

λ(pF) = 2dF pF/p‖
F (p‖

F: Fermi momentum parallel to the y–z-plane) is the length of the
classical trajectory in the ferromagnetic layer. Note that p′

F is uniquely determined by pF for
a specular surface since the parallel momentum is conserved, p‖

F = p′
F
‖.

The angle-resolved density of states in the ferromagnetic layer can be expressed in terms
of the normal part of the Green function,

N (E,pF) = 1
2N0 Re[g↑↑(E,pF) + g↓↓(E,pF)]. (12)

We now consider the angle-averaged density of states at E = 0 as a function of dF, which
is normalized by the ferromagnetic length, ξF = πvF/I . In figure 2 we present the results for
the s-wave case (�(pF) = 1.76Tc0) as well as for the unrotated (�(pF) = 2.14Tc0ηd(pF)) and
for the 45◦-rotated d-wave cases (�(pF) = 2.14Tc0η

′
d(pF)); we choose an exchange field of

I = 10Tc,0.
The zero-energy density of states for an s-wave and an unrotated d-wave order parameter

behaves quite similar up to minor deviations: we find maxima at dF = (1/2 + k)ξF/2, k ∈ N0.
At these values of dF, Andreev bound states with a large spectral weight exist in the gap region,
i.e. in the gap region the density of states is enhanced compared to the normal state value. For
a 45◦-rotated d-wave order parameter we find maxima at dF = nξF/2. The reason for this
shift is that the quasi-particles acquire an additional phase due to the scattering at the surface
which changes the sign of the order parameter. In particular for dF = 0 the commonly known
zero-energy bound states occur at the surfaces [22].

The density of states has been studied before [12, 13, 23], including surface roughness and
a finite transparency of the superconductor–ferromagnet interface. The oscillatory behaviour
has also been observed experimentally [14, 15]. A discussion of the non-magnetic case can be
found in [24].

In the following we focus on the critical temperature of bi-layer systems. As before we
assume a completely transparent interface between the ferromagnet and the superconductor;
furthermore the Fermi surfaces are supposed to be identical in both materials. The ferromagnet
is described by the exchange energy, I , and the impurity scattering strength, 1/2τF; we choose
these parameters to be I = 10Tc,0 and 1/2τF = 5Tc,0. This is a reasonable choice having in
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Figure 3. The critical temperature of a thin superconducting layer on top of a bulk ferromagnet
(I = 10Tc,00, dF → ∞) as a function of the layer thickness, dS, which is normalized by the
superconducting coherence length ξS (upper panel). For comparison the critical temperature is
also shown for I = 0 (lower panel).

mind ferromagnetic metals like Fe or Ni which are well-described by the relations Tc � I ,
and 1/2τF � I .

First we study the critical temperature of the system with an s-wave superconductor, which
we assume to be dirty, 1/2τS = 10Tc,0. The coherence length at zero temperature, ξS, is given
by ξS = √

ξ0lS ≈ 0.53ξ0 where ξ0 = vF/�0π (�0 = 1.768Tc,0) is the BCS-value of the
coherence length for a clean superconductor, and lS = τSvF is the mean free path. In figure 3
we present the critical temperature, Tc, for a superconducting layer on a bulk ferromagnet
(dF → ∞) as a function of its thickness, dS. The critical temperature decreases when the
thickness of the superconductor is reduced, and below a critical layer thickness, dS = 1.37ξS,
the superconductivity vanishes. Now we fix dS = 1.72ξS, for which Tc = 0.54Tc,0 when
dF → ∞; for this thickness of the superconducting layer we examine the critical temperature
as a function of the ferromagnetic layer thickness, dF. We find an oscillation of the critical
temperature when varying the thickness of the ferromagnet (see figure 4).

The oscillations can be explained as follows: since no current can flow across the surface
at x = dF, the pairing function has to obey particular boundary conditions, i.e. its derivative
normal to the surface has to vanish. In the presence of a spin exchange field the pairing is
spatially oscillating with wavelength ξF = πvF/I [7]. At the maxima of Tc the thickness of
the ferromagnetic layer, dF, is such that the boundary conditions are fulfilled quite naturally,
whereas minima occur if the pairing function has to be suppressed considerably to fulfil the
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Figure 4. The critical temperature of a bi-layer with fixed dS as a function of the ferromagnetic
layer thickness dF (upper panel). For all order parameter types Tc is oscillating. The parameter
dS is chosen such that Tc = 0.54Tc,0 for dF → ∞, i.e. dS equals 1.72ξS, 1.22ξS and 5.52ξS
for the s-wave, unrotated and rotated d-wave situations, respectively. For comparison the critical
temperature is also shown for the unrotated case, I = 0, where no oscillations occur (lower panel).

boundary conditions. Therefore the distance between two neighbouring minima is expected
to be of the order of 0.5ξF, which is the same periodicity as observed before for the density
of states (see figure 2). In our numerical calculation the first two minima of Tc can be found
at dF = 0.16ξF and dF = 0.62ξF (s-wave case, see inset in figure 4). Their distance is
0.46ξF which is close to the expected value. These results are consistent with other theoretical
findings [6, 7] which could also be fitted to experimental observations [3, 5]. For comparison
we also present the critical temperature for a non-magnetic metal layer (I = 0); as expected
superconductivity is suppressed less effectively without magnetism (see figure 3). For this
case, no oscillations with the metal layer thickness are observed (see figure 4), which is an
obvious result considering the discussion in relation with (8)–(11).

As previously discussed, the oscillating behaviour of the pairing function can also be
observed in the local density of states at x = dF. We calculate the density of states for those
values of dF where the critical temperature has a maximum or a minimum. The results are
presented in figure 5. For the minima of Tc (at dF = 0.16, 0.62ξF), the density of states in the
gap region is enhanced compared to the normal state; this is related to sub-gap Andreev bound
states which exist inside the ferromagnet. At the maximum of Tc (dF = 0.39ξF) we find a
gap-like structure of the density of states, i.e. in the gap region the density of states is smaller
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Figure 5. The density of states at x = dF for an s-wave symmetry of the order parameter. These
values of dF correspond to the first two minima (dF = 0.16ξF , 0.62ξF) and the first maximum
(dF = 0.39ξF ) of the critical temperature.

than the normal state value. All together we find that bound states in the gap region tend to
suppress superconductivity, and can be related to minima of Tc.

Now we will turn to the case of d-wave superconductors. For a d-wave symmetry of the
order parameter the bulk value of the critical temperature, Tc,0, is suppressed by non-magnetic
impurities, and Tc is given by [25]

ln

(
Tc,00

Tc,0

)
= 

(
1

2
+

1

4πTc,0τS

)
− 

(
1

2

)
(13)

where Tc,00 is the critical temperature for a clean sample and (x) is the digamma function.
In the following we choose the impurity scattering inside the superconductor to be 1/2τS =
0.1Tc,00 which leads to Tc,0 = 0.92Tc,00; the bulk order parameter at zero temperature is
�0 = 2.02Tc,00 which is smaller than its value in the clean case (�00 = 2.14Tc,00). As the
disorder is small the superconducting coherence length is given by ξS ≈ ξ0 = vF/�0π .

It is well-known that the behaviour of d-wave superconductors at boundaries depends
crucially on the orientation of the order parameter with respect to the boundary. Therefore we
compare the case where the order parameter is rotated by 45◦ with the unrotated case.

An unrotated d-wave superconductor is expected to behave in a similar way to an s-wave
superconductor. The reason is that along the classical trajectories the order parameter does
not change its phase. And indeed the behaviour of an unrotated d-wave superconductor and
an s-wave superconductor is quite similar: the superconductivity of a thin layer on a bulk
ferromagnet is suppressed completely when its thickness is below dS = 1.22ξS (see figure 3).
If we fix the superconducting layer thickness to dS = 1.94ξS (which leads to Tc = 0.54Tc,0 for
dF → ∞) and vary dF we find an oscillating behaviour of Tc as before. The first two minima
are at dF = 0.20ξF and 0.67ξF, and the first maximum can be found at dF = 0.43ξF (see
figure 4); the distance between the first two minima is 0.47ξF. Of course some quantitative
differences exist which are mainly due to the nodes of the d-wave order parameter. The critical
temperature for a non-magnetic metal layer (I = 0) behaves similar to the s-wave case: for an
infinite metal layer Tc lies above the value for the magnetic case (see figure 3); the oscillations
with a varying thickness of the non-magnetic metal vanish (see figure 4).

For those values of dF which are related to a maximum or a minimum of Tc, the density
of states shows qualitatively the same behaviour as for the s-wave case (see figure 6), i.e. for
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Figure 6. The density of states at x = dF for an unrotated d-wave symmetry of the order parameter.
These values of dF correspond to the first two minima (dF = 0.20, 0.67ξF) and the first maximum
(dF = 0.43ξF ) of the critical temperature.

small energies the density of states at minima of Tc is enhanced compared to the normal state
value whereas a gap-like structure can be observed at the maxima of Tc.

The situation changes drastically if the d-wave order parameter is rotated by 45◦: surfaces
are now pair-breaking as the quasi-particles are scattered so that a sign change of the order
parameter occurs along their trajectories [22], and it is well-known that at specular surfaces
the order parameter vanishes. As a consequence the suppression of superconductivity is much
stronger than for the cases discussed before. For a superconducting layer which is on top
of a bulk ferromagnet this can be seen in figure 3; in particular the critical thickness of the
superconductor, below which superconductivity vanishes, is dS = 5.18ξS, which is much
larger than in the previous situations. We now fix the layer thickness of the superconductor
to dS = 5.52ξS so that Tc = 0.54Tc,0 for dF → ∞. When analysing Tc as a function of
dF we find a completely different behaviour than before: for dF = 0 the order parameter at
the pair-breaking (specular) surfaces, x = −dS and 0, must be zero. This suppression of
superconductivity leads to a vanishing critical temperature of the bi-layer for dF < 0.06ξF.
The pair-breaking at x = 0 is weakened when the ferromagnetic layer thickness increases,
and for dF > 0.06ξF the critical temperature becomes finite. When further increasing dF the
critical temperature is oscillating as in the previous cases, but now starting with a maximum
at dF = 0.15ξF; the first minimum can be found at dF = 0.39ξF, and the second maximum
at dF = 0.62ξF. The difference between the first two maxima is 0.47ξF as for the unrotated
order parameter. It is not surprising that the periodicity is not affected by the rotation of the
order parameter because the oscillation of the pairing function is an exclusive result of the
ferromagnetic exchange energy I , and is independent of details inside the superconductor. For
an infinite non-magnetic metal layer (I = 0) the critical temperature of the rotated d-wave
superconductor remains unchanged (see figure 3), as the suppression of superconductivity is
not dominated by the metal layer but by the surface of the superconductor at x = −dS as
discussed above. The critical temperature shows no oscillations with the thickness of the
non-magnetic layer (see figure 4).

The density of states at x = dF shows a clearly different behaviour. In particular, for
dF = 0, zero-energy Andreev bound states exist at the surfaces due to the sign change of the
order parameter for scattered quasi-particles. For the first maximum of Tc (dF = 0.15ξF) the
density of states is suppressed below the normal state value (see figure 7) but a remainder of
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Figure 7. The density of states at x = dF for a 45◦-rotated d-wave symmetry of the order parameter.
The left axis applies to the density of states at the first maximum of Tc (dF = 0.15ξF), whereas the
right axis applies for the first minimum (dF = 0.39ξF ) and the second maximum (dF = 0.62ξF ).

the zero-energy bound state is still observable. For the first minimum of Tc (dF = 0.39ξF)
the density of states for small energies (E ≈ 0) is enhanced compared to the normal state
value, and for the second maximum of Tc (dF = 0.62ξF) it is suppressed, which, however, can
hardly be seen in figure 7. It is remarkable that the density of states in the gap region has more
structure here than in the previous case. This is due to the strong angular dependence of the
order parameter close to those directions which are perpendicular to the interface. Altogether,
for an 45◦-rotated d-wave order parameter, we also find that the minima of Tc are related to an
enhanced density of states in the sub-gap region, and vice versa for the maxima of Tc.

4. Conclusion

We have studied superconductor–ferromagnet bi-layers for s-wave and d-wave superconduc-
tors. In all cases discussed we observed an oscillating behaviour of the density of states as
well as of the critical temperature when varying the thickness of the ferromagnetic layer. The
origin of these oscillations is the exchange field in the ferromagnetic metal which leads to a
Larkin–Ovchinnikov–Fulde–Ferrell-like state with a spatially oscillating pairing function. In
particular we find that the density of states in the ferromagnetic layer is enhanced in the gap
region when its thickness leads to a minimum of the critical temperature. When the critical
temperature has a maximum the density of states in the ferromagnetic layer has a gap-like
structure.

Comparing the different order parameter symmetries, we observe a similar behaviour
for the s-wave and the unrotated d-wave cases. The critical temperature as a function of
the ferromagnetic layer thickness, dF, decreases for small values of dF (dF < 0.2ξF) and
shows oscillations around an asymptotic value of Tc when further increasing dF. In the s-
wave case these findings are in agreement with previous theoretical studies [6, 7], and are also
experimentally confirmed [3–5].

This behaviour is considerably modified if the d-wave superconductor is rotated by 45◦
with respect to the surface. In this case superconductivity may even vanish for very thin
ferromagnetic layers. If dF exceeds a critical value, superconductivity can be restored and
oscillations around the asymptotic value of Tc are observed. This difference in behaviour is
due to the sign change of the order parameter for quasi-particles which are scattered at the
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surface, which leads to a suppression of superconductivity. It would be most interesting to
also check our results for d-wave superconductors experimentally.
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